Laufer Junior Fellows


  
jason1 Jason Wagoner is interested in the study of chemical/biological problems using the perspective and tools drawn from chemical physics and statistical mechanics. This includes the study of aqueous solvation and molecular assembly, as well as the development of new simulation techniques for the multiscale modeling of biomolecular systems. (Citations)

 

 

Postdoctoral Associates

  
bien Harold Bien. Balázsi lab
emilano Emiliano Brini. My research focuses on solvation thermodynamic. In particular I am interested in understanding how the environment of a chemical group affects its solvation properties and therefore its interaction with the rest of the system. On this path I am currently working on the development of a solvation model that can be used to run implicit solvent molecular dynamic simulation of complex object like protein and protein aggregates.
daniel Daniel Charlebois. My research at the interface of physics and biology aims to make fundamental advances in our understanding of genetics/epigenetics and evolution, and apply this knowledge to the growing problem of drug resistance.
james James Robertson. The ability to predict protein structure from sequence, and to understand the kinetics and thermodynamics of the folding process, would lead to important breakthroughs in understanding how these molecular machines function. New insights into structure and function can lead to new treatments for disease. My research involves using physics-based atomistic models and state of the art computer simulations to study protein folding. My additional interests are in protein-DNA interactions.
bhanita Bhanita Sharma. My research focuses on probing the protein aggregation and fibril formation using MELD simulation method. Protein aggregation involves self-assembly of normally soluble proteins into insoluble amyloid fibrils, which are linked to several diseases. I believe that the powerful approach of combined physics-based atomistic model with enhanced conformational sampling techniques can provide important insights into the early stages of protein aggregation and fibril formation, structural characteristics of protein fibrils and binding mode of amyloid inhibitors.
tamas Tamás Székely. I am interested in non-genetic variability, which enables genetically identical cells to have different properties (phenotypes). A cell's phenotype can change over time, and is influenced by its environment as well as the randomness of biochemical reactions inside the cell, as genes are translated into proteins. Cell populations can consist of multiple phenotypes, with different phenotypes surviving better in different environments. Phenotype switching allows cell populations as a whole to survive stressors and toxins that only some of their phenotypes can tolerate. In particular, combining both experiments and theory, I am working on understanding how phenotype switching itself evolves in different environmental conditions, and how this leads to a cell population with a particular set of phenotypes.